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We study the concentration fluctuations for a reversible overall reaction with a rate-determining step occurring
in a system with static disorder described in terms of the random activation energy model. We assume that
the rates of the forward and backward reactions can be expressed as products of random rate coefficients
times concentration dependent factors, which can also depend on nonrandom quasiequilibrium constants such
as adsorption coefficients or MichaetiMenten constants. Further, we take the activation energies of the
forward and backward processes to have a random compaigmthich is selected from a frozen Maxwell
Boltzmann distribution. We derive a stochastic evolution equation for the joint probability density of the
reaction extenf and of the random componeAE of the activation barrier. The solution of this stochastic
evolution equation leads to a general expression for the probability derféity) of the reaction exterg at

timet. For a long time, the probability density’(£,t) of concentration fluctuations approaches its stationary
value #(§&), according to a universal power scaling law, which is independent of the detailed kinetics of the
process?(Et) ~ (&) + t7*C(§) ast — o, wherea is a fractal exponent between 0 and 1 &(d) is a
concentration dependent amplitude factor. A similar behavior is displayed by systems approaching a
nonequilibrium steady state. We generalize our analysis to multiple overall reactions and to systems with
dynamic disorder and develop methods for extracting kinetic information from experimental data.

1. Introduction with scaling exponents that are independent of the detailed
o . kinetics of the process. The structure of the paper is the
The random activation energy model is a popular approach fqjowing. In section 2, we give a general formulation of the

for describing the kinetics of rate processes in systems with yroplem, In section 3, we derive general stochastic evolution
static disordet. This model is based on the assumption that the equations for static disordered kinetics and show that their

activation energies of the rate coefficients have random com- gg|ytions are related to the solutions of stochastic evolution
ponents selected from certain probability laws, typically frozen oqyations for chemical systems with a single overall reaction
Maxwell-Boltzmann distributions. The random activation 4nq without disorder. In section 4, we study the asymptotic
energy model is essentially a statistical process with multiplica- penavior for static disordered systems. In section 5, we
tlv_e noise, which Iead;: to_ serious mathematical difficulties. Fo_r investigate the generalization of our approach for systems with
this reason, most studies in this field are based on the assumptloqnumme overall reactions and dynamic disorder. Finally in
that the concentration fluctuations can be neglected. However, sgction 6, we analyze the theoretical and experimental implica-
the study of concentration fluctuations for random activation +jons of our theory.

energy systems with linear kinetics shows that the coupling of

concentration fluctuations with the fluctuations of the rate 2. Eormulation of the Problem

coefficient leads to an intermittent behavfowhich suggests
that for disordered systems the concentration fluctuations play
a more important role than in ordinary chemical kinetics.

We consider a complex chemical process with a rate-
determining steg,which can be represented by a single overall

In this article, we study the interaction between the ordinary reaction
concentration fluctuations and the fluctuations of the rate S s
coefficients described by the random activation energy model U+Au =5 A, (1)
for nonlinear reaction systems described by a single overall uZl . £~ .

reaction. We show that for such systems the long-time behavior

of the probability of concentration fluctuations and its moments \We assume that the forward and backward reaction mates

and cumulants is described by universal power laws in time corresponding to the overall process (eq 1), can be represented
as™
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vectorA and of the vector oK of quasiequilibrium constants, tion fluctuations at timé and to evaluate its asymptotic behavior
such as adsorption coefficients or Michaeldenten constants  in the thermodynamic limit and/or for a long time.

E. + AE, 3. Stochastic Evolution Equation Approach to Static
k, = .1, exg— T (3 Disordered Kinetics
B
We introduce the joint probability

are activated overall rate coefficients;. are pre-exponential 7 . .
factors,E+ andAE. are deterministic and random components (EABNdSAE - with

of the activation energies, respectivels is Boltzmann's j:o j:o WBEAENIEJAE=1 (11)
constant, and is the temperature of the system. According to
the theory of reactions with one rate-determining stefpthe of the reaction exten and of the random componeAE of

rate coefficientk.. of the forward and backward reactions fulfill  the energy barriers at timteand the conditional probability
the condition

AR(E|AE;H)dE  with fow REIAENDIE=1 (12)

Kk = (K™ (4)

The simplest version of the random activation energy model
assumes static disorder; that is, a fluctuation of the energy
barrier, once it occurs, lasts forever. Under these circumstances,
the probability density oAE is time invariant and given by eq
9. It follows that

whereo* is the stoichiometric number of the rate-determining
step andKeq is the equilibrium constant of the overall reaction
1, which is nonrandom. From eqgs 3 and 4, it follows that

AE, =AE_=AE ®) EIAENE = (£ AE;1)dEIP(AE) (13)
because otherwise the equilibrium constat, would be Considering a given random fluctuatiakE of the energy
random. barriers an evolution equation for the conditional probability

The composition of the system can be represented in termsd€nsity “(§]AEt) can be derived in terms of the chemical

of a single chemical variable, the intensive reaction exgesft Hamiltonian (eq 7)
the overall reaction 1. We have

i MEIAED = ~Q Hysqecligg AEIAED (1)
dé = dA/(v, =) 6) _ _ -
From egs 3, 4, and 7, we notice that the chemical Hamiltonian

By use of the Schroedinger analogy for the chemical master (eq 7) can be expressed as

equatior?, it follows that the composition fluctuations can be

described by the following chemical Hamiltonian operator HdisordereL&%]"" = X(AE)Horderetlgva_a&]“-- (15)
Hasosoefigg = k[t~ o~ g, + e
49 X(AE) = exp(~AE/ksT) (16)
k,[l - exp(+9 a—g)][g,(gK)...] )
is a random transparence factor and
where 9 E_
Horderec{g,a_g] = A ex;{— @_) X
9-(£.K) = g.(A(0) + &[v, — v,1.K) (8)

K" [1— exd -2 g, (EK)..] +
andQ is the system size. { I [ F( 35) "

We assumefthat the random componeAE of the activation _ F( —13)]
energies is selected from an exponential probability density ll expte 0& [9-(5.K)...]p (17)

is the chemical Hamiltonian corresponding to a system without

P(AE)JAE = 5 exp(-SAE)dAE  with disorder for whichAE = 0.
j(’)‘” P(AE)dAE =1 (9) By combining eqs 1317, we can derive the following
evolution equation for the joint probability densitg(&,AE;t)
where the factop = 1/IAEQis in general a function of the 1 0 - -1 a] .
system temperatur€ which obeys the constraint 7(AE) ot BEAED = —Q Horder@{g’a_gl BEAED (18)
o= BkgT = (kg T)/IAED< 1 (10) By assuming that the fluctuations of the energy barriers are

independent of the initial fluctuations of the reaction extent

If § = 1(ksT-) with T- > T, then eq 9 corresponds to a frozen att = 0, the initial condition for the evolution eq 18 is

Maxwell—Boltzmann distribution corresponding to the temper- 7 0) — o

atreT.. B(EAE0) = P(AB) () (19)
Given the above assumptions, the purpose of the present Now we consider a system for which the fluctuations of the

article is to evaluate the probability densky&,t) of concentra- energy barriers do not exist, that SE = 0. Such a system is
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described by the evolution equation

0

&-(i/%rdere((at) = _QilHorderenig’a_aE]-@:)rderet{g;t) (20)

with the initial condition
%rdere&g;o) = g})(g) (21)
where %ered&;t) is the probability density of the reaction extent

& at timet. Equation 20 is a standard chemical master equation
without disorder, which has been extensively studied in the

literature. In some cases, such as first-order reaction networks

or simple irreversible nonlinear kinetics, exact analytical solu-
tions are available. Otherwise an asymptotic solution can be
derived in the thermodynamic limit by means of the eikonal
(Wentzel-Kramers-Brillouin) approximatior® The eikonal
approximation leads to the following expression for the prob-
ability density #rgered&;t)

PderedED) = 2 T explRQAED] as Q— o with
& = constant (22)

where

L) = [ explR A(ED)]dE

is a nonequilibrium chemical partition function ang;t) is a
chemical action, which is the solution of the Hamiltedacobi
equation

(23)

5 ED FHogeefgz 50| =0 @4

By comparing egs 18 and 19 with egs 20 and 21, we notice
that they have exactly the same structure. We notice that we

can express the solution of egs 20 and 21 in terms of the solution

of egs 18 and 19. We have
BEAED) = Lygeref EU(AB)P(AE)  (25)

We are interested in the evaluation of the probability

-(/’aisordereg‘g;t)dg with fg%isordereég;t)dg:l (26)

of the reaction extent at timet for disordered systems. We
obtain

-%isordere&g;t) = JSW *'(Z;(E’AE;t)dAE =
S P orekE(AE)PAE)IAE (27)

We insert eqs 9 and 16 into eq 27 and use the integration
variablef = ty(AE), resulting in

; — t 1
—%isordere&g;t) =ot® L/(‘) 0" 1'(1/2)rdere((§;0) do =
) - t J
-%grderer(&t) -t j;) Ha@-%rdere((g;e) do (28)
From eq 28, we can evaluate the momegt¥t) disorderedOf

the intensive reaction extents for the disordered system. We
obtain

Vlad et al.

—a [t oa—
|Em(t)%sorderedz at ‘[(‘) 0 l@m(e)lgrderedde =

@m(t) Qrdered_ e ﬁ 0% 8_89 @m(e) Qrde,eddﬂ (29)

where [EM(t) [drqereq are the moments of the intensive reaction
extent for the system without disorder. In Appendix A, we derive
similar expressions for the cumulani@™(t) Mdisordered OF the
intensive reaction extents

m
Y2 T
n=1 ng,...N

Sull=n I_lwnw!

L (00" ™0, Brgeread0u} =
(-)" (-1

|_| W) vlv:l

. 9
j(; (Ow)agqnw(ew) |grdereddew} (30)

1" *n—1) m

g

D]Em(t) [Dgisordered: O“mt_

m

Zwhw=n

{ |1.””('[) [drderea™ % x

In conclusion, in this section we have derived exact expres-
sions for the time dependence of the probability density of the
intensive reaction extent in a static disordered system and its
moments and cumulants. These results are used in the following
section for the analysis of the asymptotic behavior of concentra-
tion fluctuations in the thermodynamic limit and for a long time.

4. Asymptotic Behavior

We start out by studying the asymptotic behavior of concen-
tration fluctuations in the thermodynamic limit. We consider
large system sizes and arbitrary and finite times and introduce
the extensive reaction extent

E=Q¢ (31)
In Appendix B, we show that for systems without disorder in
the thermodynamic limit the cumulantBE™(t) {dgereq Of the
extensive reaction extent all tend to O in the thermodynamic
limit and the concentration fluctuations are nonintermittent.

For disordered systems in the thermodynamic limit, the
probability of concentration fluctuations does not obey the
eikonal scaling; however, it can be represented as a superposition
of eikonal distributions. We have

PrsorgerebEit) = at™ j;t 0“1 /0) " explQ 7(£:0)] dO (32)

Since the eikonal scaling does not hold anymore for disordered
systems, the cumulanf&E™(t) TdisorderecOf the extensive reaction
extent are in general no longer proportional to the size of the
system. By use of a method similar to the one presented in
Appendix A, it is possible to derive a general formal expression
for the cumulant of ordem. However due to the complexity of
this expression, it is hard to derive the scaling conditions for
the cumulants as a function of the system size in the thermo-
dynamic limit. Nevertheless, it is possible to evaluate these
scaling conditions step by step. We come to

—a [t pa—1[9(X)
D]E(t)mgisorderedw Qat a.fo 6" 1( X )x=0 do - as

Q— o (33)
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5 RN b1 %51 For finite system sizes, the relative fluctuations tend toward
ME(t) Hisordered™ Qo0 jg) s Tl do + constant values at long times and the concentration fluctuations
g x=0 are intermittent
- _1[38(xt) 2 -
QX lat™ [ o 1(—) de] —at™ x
Z{ [ v/‘; X [x=0 ng)orderegt) =
| [82a0ct 2 M) T Moo
j(‘; et ( C (2 )) ] d@] as Q — oo, etc. (34) (13 ()[ﬂgsorderend;_. [E"( )Eﬂgrderero:1 s t—w (41)
X" x=0 [E() Wisordered [ [13(0) M gered

where &(x;t) is an adjoint stochastic potential introduced in
Appendix B.

From eqgs 33 and 34, it follows that for disordered systems
the relative fluctuation of order two

However, if both the system size and the time tend to infinity,
the relative fluctuations tend to O and the concentration
fluctuations are nonintermittent

Cgins)ordere&t) —0 as t—w and Q—ow (42)

2
€(2) ét) — Hic (t)DJJisordered (35)

disordere ME() Ty goreq In conclusion, in this section we have derived asymptotic

scaling laws for the probability density of concentration
tends toward a constant value @s— o fluctuations and its moments ano_l cumulants for_ static (_jisordered
systems. For large system sizes and arbitrary times, the

@ S azcéj(x;t) 2 probability density of concentration fluctuations does not obey
disorderedt) — 1 — ﬁ) 0 ? . do eikonal scaling and the concentration fluctuations are intermit-

-

tent. For a long time and arbitrary system sizes the probability
t a1 9S(X) 2 density of concentration fluctuations and its moments and
Jc; 0 ( X )x—O dQ] } as Q— o (36) cumulants approach time-invariant values according to negative
power scaling laws and the fluctuations are also intermittent.
For both large system sizes and times, the probability density
of concentration fluctuations obey eikonal scaling and the
fluctuations are nonintermittent.

[ ot

It follows that for disordered systems in the thermodynamic
limit the concentration fluctuations are intermittent. Here and
in the following the term intermittent has the usual meaning
from statistical mechanics and theory of turbulence; that is, it
means that in a limit of the thermodynamic type, the relative 5 Generalizations

fluctuations of different orders of the stochastic variables that o ) .
describe the process do not tend toward 0. In our derivations in sections 3 and 4, we have assumed that

The next step of our analysis is to study the scaling behavior the system evolves toward a state qf chgmical _equilibrium. Itis
of concentration fluctuations for arbitrary system sizes and a €aSY 0 check that all equations derived in sections 3 and 4 also
long time,t — o. In Appendix C, we show that for a long time hold in the more general case where some constraints are present
the probability density of concentration fluctuations tends toward that prevent the system from reaching chemical equilibrium and

the time-independent valu&gered&;0) according to a self- instead the system _approa_ches a nonequilibr_ium steady state.
similar negative power law A second generalization is a complex chemical process with

many rate-determining steps, which can be represented by a
-Q/Zjisordereég;t) ~ '(Z::ererer(aoo) + t_aC(E) as t—o (37) set of R overall reactions

S S

whereC(&) is an amplitude factor evaluated in Appendix C in A — “ A w=1 R 43
terms of the eigenvalues of the chemical Hamiltonian (eq 17). UZ‘ Y/ P Y/ B (43)
An alternative but equivalent expression f@(£) can be
evaluated from eq 28. We get We assume that the forward and backward reaction rafés
5 corresponding to the overall process (eq 1) can be represented
CE) == Jfy 0" 35 LoraerchE:0) dO (38) 3
r. = k.9, (A K) (44)

Similar asymptotic expressions can be derived for moments and

cumulants. We obtain . . .
whereg.W(A K) are complicated functions of the concentration

vectorA and of the vector oK of quasiequilibrium constants,

m ~

() Wisordered™ ; such as adsorption coefficients or Michaelldenten constants
|zm(oo)grdered_ tiaf(‘) 9(1% @m(e)grderedde as Ei(w) + AEi(W)
t— o0 (39) kMW= _¢™exg— kT (45)

. A o e L L

E™(t) Wisordered™ > ——— l_l X are activated overall rate coefficients,.™ are pre-exponential
= znl ..... M |_|an! w= factors,E+™ and AE.™ are deterministic and random com-
whw=n

5 ponents of the activation energies, respectively, and other
Ny i [ o % 4n ~ symbols have the same significance as before. According to
[@ (%) Wrderea t fo (6 39W@ (ew)gfdefeddew] the theory of multiple rate-determining step$, the rate

m coefficientsk.™ of the forward and backward reactions fulfill
[IE7(0) [gered aS t— 0 (40) the conditions
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Ow' R
k+(W)/k_(W) = (K(W))l/ w (46) 9
b Horgered& Vel-... = Z HW e E’E (55)
where oy* is the stoichiometric number of thevth rate- . W
determining step anﬂg’;) i; th_e equilibrium constant of the We notice that in general the total Hamiltonianidstdered
wth overall reaction 1, which is nonrandom. From eqs 45 and [£,V].... cannot be expressed in a simple way in terms gfaHa
46, we come to a set of conditions similar to eq 5 [£,V2]..... This is possible only if
AE," = AE," = AE™ (47) AED = = AE® = AE (56)
because otherwise the equilibrium constaKQg) would be and
random. L o
The composition of the system can be represented in termsy,(AEY) = ... = yo(AE®) = y(AE) = exp(—AE/kgT) (57)
of R chemical variables, the intensive reaction extefjof
the overall reactions 43. We have that is, if the fluctuations of the energy barriers are collective

and controlled by a single random component of the activation

R 3 N energies. If the conditions (eqs 56 and 57) are fulfilled, then
dA, = Z (Vaw — Vuw dE, (48) egs 49 and 57 lead to a condition similar to eq 15
W=
Hy; V... = y(AE)H V... 58
The composition fluctuations can be described by a compound dsorderehS: V] HAB Hordered . Vel (°8)
chemical Hamiltonian operator In this case, the theory developed in sections 3 and 4 can be
R 3 easily extended for multiple overall reactions. We get the
— following expression for the probability density of concentration
Hdisordereﬁg’vé]"" - V\Z\ Hgli\ls)ordere[ag] (49) quctuati%nsp P y y
W
B — t 1
where§ = (glr &2, ) -("/Zjisordereég;t) =at™® |fo 6% l-([:)rdere((ae) do =
_ R S .
Hgli\ls)ordere[&%] = k+(w)[l - ex;(—Ql %)] X %rderer{git) t j:) o %’%rdere&gle) do (59)
W, W,

[0, (EK)..] + K (w)[l _ eXF(91 i) [0_“(EK).. ] which has the same structure as eq 28 with the difference that
LUEK).]+ K _WEK)...

9, the intensive reaction exterdt is replaced by the vector of
(50) intensive reaction extents
If for systems without disorder for a long time the probability
are chemical Hamiltonians attached to overall reactions (eq 43) of concentration fluctuations evolves toward a stationary value,

and then the results about the large size and time behavior derived
in section 4 can be easily extended for multiple overall reactions.
0.(EK) = g.(A0) + [vy, — Vil EK) (51) For large size and arbitrary time as well as for long time and

arbitrary size for a disordered system the concentration fluctua-
By analogy with eq 15, the chemical Hamiltonians attached to tions are intermittent. For large sizes and finite time, the eikonal
the different overall reactions can be represented as approximation does not hold. For a long time, the probability
density approaches its stationary value according to a negative
[S,i] = XW(AE(W))Her%ere{E,i]--- (52) power law. If both Fhe t_ime and the system size are_large, then
9, 9, the eikonal approximation holds and the concentration fluctua-
tions are nonintermittent.
where Another generalization corresponds to the case where the
fluctuations of the energy barriers are dynamic, that is, the
2 AEY) = exp(—AEW/K,T) (53) fluctuations of the energy barrier are random functions of time.
We consider the case of multiple overall reactions with collective
are random transparence factors attached to the overall reactionfluctuations, which includes the model of a single rate-

HW

disordere

(eq 43) and determining step as a particular case. If the fluctuating com-
ponentAE of the activaton energy barriers is a random function
9 E.™ of time, the same is true for the transparency factor
Hgv:c)Iere glf e — _/{,(W) exp — H X
W x(t) = exp[~AE(t)/(kgT)] (60)
- 1 0
(Kgg.))l/ow [1 - EXF{_Q ! f)] [9."(EK)..]+ It is convenient to introduce a random, intrinsic time sca(e),
W which obeys the stochastic evolution equation
-1 0
1—exd+Q 1 = ||[g_“(K)..]t (54 to
[ { agw)][g (1) 69 dB(0/dt=1(0.60) = [, x(t) (61)

are individual chemical Hamiltonians attached to the overall From eqs 58 and 61, it follows that, for a given realizatjgt)
reactions (eq 43) for a system without disorder. The total of the transparency factor, the conditional probability density
chemical Hamiltonian for a system without disorder is given of concentration fluctuation®sordereS|y) is the solution of
by the master equation
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0 _ ]
ae(t)-%isordere&a?{) =0 lHordefeJ‘S'vé]‘(f’disordere&aX)
(62)
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barriers. It is also possible to derive general expressions of the
probability of concentration fluctuations for systems with
dynamic disorder. Concerning the possible experimental oc-

currence of the various types of disorder considered here, we
which has the same structure as the evolution equation for theemphasize that we are not aware of any experimental studies
probability density“dered&) corresponding to a system without  for which the collective fluctuations described in this section

disorder have been observed. We think that such collective fluctuations
5 may exist, especially for processes where the fluctuations of

7 _ _1 7 . .
ot Lordered®) =~ Horgere& Ve Loraered?)  (63) the energy barriers are caused by the fluctuations of the same

external random parameter, such as a random electromagnetic

It follows that the unconditional probability density of concen- field.

tration fluctuations for a disordered systemisordere§s;t), can

6. Experimental Implications
be expressed as P P

Since most experiments on disordered kinetics deal with
PrsorderebEi) = 07 ored E:0(0) (= [Vordere&éifotX(t') dt)O macro_sc_opic_ (avergge_) concentrations or reaction extents, the
64 analysis in this section is focused on the study of average values.

(64) For a single overall reaction, the average intensive reaction

where[l..Dis a dynamic average taken over all possible values €xtent can be evaluated from egs 29 and 39
of the random functiory(t). o 3
To evaluate the dynamic average in eq 64, we represent&(t) Jisorgerea™ &) Grgerea— t ﬁ) 0* ﬁﬁ(e)@de,edde ~
Fordered&;0) as an inverse Fourier transform a
|}(oo)lgrdered_t B as t—ow (70)

_ 1 +oo . -
~(/Z)rdere((§;9) = Zl’ f,w dor eXp(—Iwa)—%rdere({E;w) = with

1 (4w oo . .
E f_‘” de 'ﬁ) dx equ ZD‘(X B 0))~%rderec(gix) (65) B= l/(;oo ta% |:&(t) |Qrdereddt = j(‘:" tarordere((t) dt (71)

where . .
whererggeredt) = r+ — r— is the net reaction rate for a system
without disorder, expressed as a function of time.

Equation 70 is a generalization of similar types of asymptotic
laws derived for special types of reaction kinetics. Negative
power laws of the type (eq 70) have been derived in the literature
both for relaxation processes as well as for first-order, irrevers-
ible reactions in disordered systefndlore recently, similar
scaling laws have been derived for reversible, first-order
kinetics’ as well as for nonlinear, one-variable reaction kinetics

_ 1 +o0
*C[aisorderegg;t) = % f_m dor x
in disordered systen¥Equation 70 describes all these situations
as particular cases.

exp(—iw j;t x(t') dt) j:o dx exp@wx)flgrdere((&;x)ﬂ (67)
An important factor for experimental applications is the time

We represent the stochastic properties of the transparence factonecessary for reaching the scaling asymptotic regime described
x(t) in terms of the characteristic functional by eq 70. If the scaling regime is reached very close to the
stationary regime, the experimental study of the scaling regime
can be very difficult. Fortunately this is not the case. Experi-
mental data reported in the literatirehow that the time
necessary for reaching the scaling regime is of the order of
magnitude of the reaction half time. The same conclusion can
be reached by simple numerical computations for isolated,
irreversible reactions of first and second order. By use of simple

Dereh&im) = [ €XPI0) FogeredE:0) dO

is the direct Fourier transform ofyered5;6). In €q 65 we have
taken into account thatgeredé;t < 0) = 0. Equation 64
becomes

(66)

t
Ja(t)] = exp( [, alt)x(t) dt)0 (68)
whereq(t') is a test function conjugated to the transparence
factor y(t'). By assuming that in eq 67 the dynamic average
and the integrals commute, we come to

Phisordered&:t) = analytic expressions for the average concentrations derived in
1 4o . . o ) _ our previous publication’;® we have done simple numerical
Et/:m de/[q(t') = —iw] fo dxexp(@X) ZogeredE:X) computations which show that, for an irreversible reaction of

(69) first order, the time necessary for reaching the scaling regime
varies between 0.8 and 1.4 half times, depending on the

Equation 69 is the generalization of egs 28 and 59, for systemsnumerical value of the scaling exponentextreme values of
with dynamic disorder. Unlike egs 28 and 59, in general, eq 69 «, close to 0 or unity, lead to shorter times necessary for
does not lead to universal relaxation laws for a long time. To reaching the scaling regime, whereas values afose to 0.5
investigate the asymptotic of the probability of concentration lead to longer times. The behavior for second-order reactions
fluctuations, we need a more detailed knowledge of the dynamic is a bit more complicated; in this case, both the half time and
fluctuations of the random energy barriers. the time necessary for reaching the scaling regime decrease with

In conclusion, in this section, we have investigated different the increase of the initial concentration of the reacting species
generalizations of our approach. The results for a single overall but in different proportions. There is no simple relation between
reaction approaching equilibrium also hold for processes ap- these two times; nevertheless, the time necessary for reaching
proaching a nonequilibrium stationary state or for multiple the scaling regime has the same order of magnitude for the
overall reactions with collective fluctuations of the energy reaction half time.
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The time-dependent factor of the asymptotic kinetic law (eq
70) is universal; that is, for a long time, the power law * is

Vlad et al.

From this slope, we can evaluate the reaction ondé&romB,
o, andn, we can evaluate the nonrandom phrof the rate

independent of the kinetics of the process. The amplitude factor coefficient by using eqs 7779.

B, however, depends on the kinetics of the process. Unfortu-
nately, it is hard to extract the kinetic information from the
amplitude factoB. In the following, we come up with simple
rules in the particular case of single species, irreversiklg (

— o), noncatalytic overall reactions with a single determining

The experimental study of the variation of the scaling
exponent with temperature,= a(T), leads to information about
the distribution of the random energy barrierso(T) is a linear
function of the absolute temperature, then the random compo-
nent AE of the energy barriers is distributed according to a

step. We assume that the overall reaction can be represented alaxwell—Boltzmann energy lah?10

vA — Products (72)

and that the kinetics of the process can be represented by the

mass action law and the rate of the process is given by

Fordered— kA" (73)
wherek is the nonrandom part of the rate coefficient. Since in
general the reaction is not elementary, the reaction ordeed
not be equal to the stoichiometric coefficientWe solve the
deterministic kinetic equation and use the integral kinetic
equation for expressing the reaction the reaction r@igeqas

a function of time. We obtain

rordere({t) =

PR (%
nfq o (1—n) n/(1—n) _
k(AL — (1 — n)(A) *k{ h(—(l— K t)
for n<1 (74)
lorderedt) = Agkexp(—kt) for n=1 (75)
Fordered?) = K(AQTL + (n — 1)(AY" kg Y
for n>1 (76)

whereA; = A(0) andh(x) is the Heaviside step function. We
notice that fom < 1 the asymptotic scaling law is approached
after a finite, although usually long, time. From eqs—74,
we come to

1
B= kfa(Ao)l-m(lfn) F(l i a)r(m)

_ 1+a 1
(1—n) F(1+a+—1_n)

for n<1 (77)
B=K°AT(1+a) for n=1 (78)
F(l + a)F m - )
B= k—(l(AO)l-HI.(l—n) . -
(n - 1) r(m)
1
for n>1 and n—1>a (79)

We suggest the following procedure for extracting kinetic
information from experimental data. The procedure starts with
the evaluation of the scaling exponeat If the random
activation energy model is correct, then the scaling expoment

P(AE) dAE = (kBT*)_l exp(—AE/(ksT.)) dAE (80)
frozen” at a constant characteristic temperature

T. = 1/(0a/3T) (81)

If the scaling exponent. = o(T) is a nonlinear function of
temperature, then the distribution of energy barriers, although
still exponential, is not characterized by a constant characteristic
temperature.

If the distribution of energy barriers is not exponential, then
the universal scaling law (eq 70) is not valid anymore. In this
case, it is of interest to evaluate the distribution of energy
barriers from experimental data. For an arbitrary distribution
of energy barrier®(AE) dAE, eq 27 is replaced by

PisorderelED) = [ PovorchE(AB)P(AE) dAE =
ﬁ)l ForderedSit0P() dy (82)

where
p() = [ olx — exp(-AE/(kgT)]P(AE) dAE =

ke T

TP[kBTIn(llx)] (83)
is the probability density of the transparence fagtoFrom eq

82 we get the following expression for the average integral
kinetic law

1
@(t)gisorderedz ﬂ) @(tX) Qrdere(p(X) dX (84)
Now we represent the average integral kinetic law for a system
without disorder,[&(t)[drqerea Dy an inverse Fourier transform
(see also eqs 65 and 66)

EO gores= 5 [ G XDt E(0) Jareaer (85)

where

[E(@) Graerea= J, eXPIOYED) Grgereadt  (86)
is the direct Fourier transform of the integral kinetic law for a
system without disordefZ(t)drqered IN €q 85, we have taken
into account thatZ(t < 0)ldigerea= 0. By combining eqgs 84
and 85, we come to

may be dependent on temperature but must be independent of

the initial concentratior®. A first experimental consistency

test of the model is the fact that repeated experiments at the

same temperature but with different initial concentratidgs
leads to the same exponemtIf this is the case, the plot IB
vs In Ag must be a straight line with a slope# a(1 — n).

@(t)gisorderedz 2%_ j‘;:” deo jé,l d% X
exp(_ith)@(w)grdereap&) (87)

Next we introduce the characteristic function
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— N [ _ In conclusion, in this section we have investigated some
p(o) = [." explxo)p(y) dy = [, explxo)p() dx  (88) experimental implications of our theory. We have introduced a

consistency test for the validity of the random activation energy
model in its simplest form, which assumes an exponential
distribution of energy barriers. For simple kinetic models, we
have introduced a simple procedure, which makes it possible
1 te _ to evaluate the kinetic parameters of the process, from the
LB (1) Wisordered™ P f,m p(— o) & () gereqdem = amplitude factor of the scaling law. For the case where the
1 ptoo o distribution of the energy barriers is not exponential, we have
ﬁf—m p(o)@(— T)ud doo (89) a general approach which makes it possible to evaluate the
rdered probability densities of the transparence factors and of the
Equations 84 and 89 are linear integral equations for the activation barriers from experimental data. We have also
probability densityp(y) of the transparence factor and its introduced a method for the direct evaluation of the moments
characteristic functiop(o). By solving these equations numeri-  ©f the transparence factors from experimental data.
cally, we can evaluate the functiop§;) andp(o). Further on,
by applying eq 83, we can compute the probability density of
the random component of the energy barrier

P(AE) = (kgT) " exp(~AE/(ksT))plexp(—AE/(ksT))] (90)

If experimental data are not accurate the evaluation of the In this appendix, we evaluate the cumulants of the intensive
functionsp(y) andp(c) may not be possible. However, the first  reaction extent. We introduce the cumulant generating function
few moments of the transparency factor can still be evaluated of the reaction extent for the disordered system

from eq 89. We recall the moment expansion of the character-
istic function p(o)

of the probability density(y) of the transparence factor. In eq
88, we have taken into account thdy > 1) = 0. By using eq
88, eq 87 becomes
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Appendix A

%isordere&p;t) = In{ ‘[‘-(Z:jisordere&at) eXPGPE) df} =

“ (i) o im
p(o)=1+ z —_— |__}i'm|:| (91) Z —_ D]Em(t)mgisordered (A1)
= ml e=ml
where and the moment-generating function for the reaction extent for
" 1 m a system without disorder
A= [0 xTeG) dy m=1,2, ... (92)

ordered0it) = f—%rdere&é;t) exp(pé) d& =

are the positive integer moments of the transparence factor and”

use a Taylor expansion of the average kinetic cUd(®[disordered im

1+ rer # @m(t)lgrdered (A2)

00 m dm
[E(t) disordere™ E(0)H Z\_'_ [E(0)disorderea (93) . ) . . . )
=1 ME g™ Here p is the Fourier variable conjugated to the intensive
reaction extents, MEM(t){disorderea @re the cumulants of the

We insert eqs 91 and 93 into eq 89, resulting in reaction extent in the disordered system, &B®{t)[digereqare
1 the moments of the reaction extent in the ordered system. By
E(0)— - fj: @(w)@rdereddw + combining egs 28, A.1, and A.2, we come to
‘(/fdisordere&p;t) =
Z m' I}( )leordered |n{1 _|_ at—a ft 0&-1[(g;rdere((p;6) _ 1] de} —
. +00 = il (_
(_|)ml—_ﬂtm[’27_[ ﬁm wm@(w)grdereéjw] =0 (94) - Z I_l{!/(; (0,)" " x
From eq 94, we obtain the following equations for the moments © (ip)™
Zﬂ(—i)_m d L e, ! |}EW(QW)Qrdereddgw
[-_Q&mD= dlm (O)l%sordered (95) o ( at” )m o ( ) | m
f o @(W)Qrdereddw — Z ,0 € rl
€= € |
An alternative set of equations for the moments can be obtained ziﬁwi I_l‘“"E

by applying a similar procedure to the integral eq 84 e
{./(‘)(Gw)OL ' (ew) grdereddgw} (A-3)

Eﬂ [E(0)sorgerea By changing the order of summation and the summation labels
s (96) in eq A.3 and comparing the result with the expansion in eq
da [%(0)drgereq A.1, we can compute the cumulani§™(t) [disordered WE COMeE

to
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m (n—=1) m The time dependence of the probability of concentration
ME"™(t) Wicordered™ Z (-1t z B l_l X fluctuations in the ordered system is given by

n= Ny |_|WnW| w=

Zul=h 0.\ -@brdere((g;t) =
w
[ fot @”W(GW)Qrderedd(T) ] (A.4) > 1§ exp- QA + JouEA) exp(-Qatdi (C.1)
u
from which, integrating by parts, we obtain eq 30. where 1, and 1 are the eigenvalues from the discrete and
continuous spectrum of the chemical Hamiltonian. The smallest

Appendix B discrete eigenvalue i = 0, and simple; all other eigenvalues,

discrete or continuous, have positive real parts; these restrictions
We introduce the characteristic function of the extensive ensure that for large amounts of time the state probability

reaction extenE = Q§& evolves toward a time-independent value. For systems with
detailed balance, the eigenvalues are discrete and real. Multiple
Gorderedit) = [EXp(EDb) = eigenvalues may occur, but they are rather unlikely and are

] therefore neglected in eq 1. By inserting eq C.1 into eq 28, we
S eXPIRD) fpereED U BL) oot A5 By inserng & )

and evaluate it in the eikonal approximation. We insert eq 22
into eq B.1 and evaluate the integral by using the steepest-aisorgeres) = » Tu(EXeXP(-QAL) +
descent approximation. We obtain u
(AN *y(oe + 1,240} + f @ (EA)[exp(—QAt) +
Gorgeredbit) =2 [ exp(Qéb) exp{ Q[igb + Qi) (o + 1.010] &1 (C.2)
AED]}HE ~ exp[Qy(ibt) + Q%] as Q—ow with ) ) .
£ = constant (B.2) where y(x,y) is the incompletey function. By use of the
asymptotic properties of the incomplete gamma function, it

where follows that
w(lb) - ibg(ib) +(/(/((Ib)) (B'3) -%isordereég;t) ~ -%rderer(g;oo) + tiac(g) as t—o (CS)
and
where

&xt) = —[a7(&t0g) Y

= 7(L06t); D/t = xx = ib (B.4) C(&) =T(a+ 1)[2 (QL) &) + [(Q1) *p(1,E) d1]

is the inverse function of—9(&;t)/05. The cumulants (C4)

[E™(t) Mrgereacan be evaluated by expanding@arderedbit) in andT'(x) is the complete gamma function. A similar analysis
a Taylor series. We have can be carried out for the moments and the cumulants.
(ib)" The contribution of multiple eigenvalues, if they exist, can
@ (] . - . . ( .
= m be analyzed in a similar way. A discrete elgenvmq@ with
N Gorgered i) mZ\ ml ME () Wrgerea  (B-5) multiplicity m leads to contributions to%gered€;t) containing
exponential terms modulated by polynomials
By combining egs B.2, B.3, and B.5, we come to
_ f M@ expcQA™) x=0,..,m—1 (C.5)
ME(1) [ gereq™ QATEO)/0X™ as Q— o  with
& = constant (B.6) Such terms lead to contributions 1@isorgerefE;t) Which scale

. . ) . ast™*ast— c. We have
We notice that for systems without disorder the relative

fluctuati f different ord - -
uctuations of different orders ot uﬁ; 6% 4 M(&)6* exp(—QAM0) do =

{m = D]Em(t)mgfdered% Q-1 AR (RS 0 ot *p(a + xQAM) ~ t %l +X) as t— o (C.6)
T MR () Whierea 000/
as Q—o (B.7) which, once again, leads to the asymptotic law C.3.
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